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1. Random signals

Consider the following system where x[n] is a wide-sense stationary random signal and H(z)
and G(z) are two fixed stable filters. Consider the autocorrelation function of x[n], and the
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cross-correlation function of y[n] and z[n]

γxx[m] = E{x[n]x∗[n − m]}

γyz[m] = E{y[n]z∗[n − m]}.

Show that in the Fourier domain we have:

Γyz(e
jω) = Γxx(ejω)H(ejω)G∗(ejω).

2. Wiener filter

Consider the following filtering system:

x[n] −→ h[n] −→ y[n],

where input {x[n]} is a wide-sense stationary process with γxx[m] = E{x[n]x∗[n − m]}, and
{h[n]}K−1

n=0
is a fixed filter.

(a) Let γyx[m] = E{y[n]x∗[n−m]} be the cross-correlation sequence between x[n] and y[n].
Show that

Γyx(z) = H(z)Γxx(z).

(b) Develop a length-L Wiener (or MMSE) filter {g[n]}L−1

n=0
to estimate {y[n]} from {x[n]}:

ŷ[n] =
L−1
∑

l=0

g[l]x[n − l],

that minimize the MSE E{|y[n] − ŷ[n]|2}. In particular, write down a set of normal
equations to solve {g[n]}L−1

n=0
from {h[n]}K−1

n=0
and {γxx[m]}.

(c) For K = L + 1, show that the Wiener filter can be written as

g[k] = h[k] + h[L]b[k], k = 0, 1, . . . , L − 1.

where {b[k]}L−1

k=0
is the optimal order-L linear backward predictor for {x[n]}.
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3. Consider an estimation problem, where a signal x[n] is to be represented by a constant c. Let
the autocorrelation function of x[n] be given by E {x[n]x[n − m]} = γxx[m].

(a) Determine the value of c which minimizes the mean-squared error, ε = E
{

(x[n] − c)2
}

.

(b) Suppose that an adaptive algorithm is to be used to adaptively estimate c from the
data x[n]. Let c[n] be the current value of the estimate. Find the gradient of the mean
squared error with respect to the coefficient c. By analogy to the LMS algorithm, derive
a “stochastic gradient” update algorithm for c[n]. Note that like the LMS algorithm,
the update must not require knowledge of the statistics of x[n].

4. For the same estimation problem given in Problem 3,

(a) If E {c[n]} converges, to what does it converge? Make appropriate assumptions (e.g.
you may use independence theory).

(b) Under what conditions does this algorithm converge in the mean, i.e., E {c[n]} → c̄∗ for
some c̄∗? Make appropriate assumptions (e.g. you may use independence theory).

5. Leaky-LMS algorithm

The Leaky-LMS algorithm is an adaptation strategy which attempts to minimize the following
cost function:

εL = E
{

e2[n] + λw̄[n]T w̄[n]
}

w̄ where λ > 0 and w̄[n] are the coefficients of the usual adaptive filter problem, i.e.,

ŷ[n] = w̄[n]T x[n]

x̄[n] = [x[n], x[n − 1], ..., x[n − p + 1]]T

e[n] = d[n] − ŷ[n];

where d[n] is the desired response, and x̄[n] is the vector of inputs to the filter. Assume that
x[n] and d[n] are zero-mean, wide-sense stationary random processes. The autocorrelation
function of x[n] is given by E {x[n]x[n − m]} = γxx[m], and the cross correlation between
d[n] and x[n] is given by E {d[n]x[n − m]} = γdx[m].

(a) Determine w̄opt, the set of filter coefficients which minimize εL. Clearly define all terms
in your expression.

(b) Determine ∇w̄εL, the gradient of the error with respect to the filter coefficients. By
analogy to the LMS algorithm, determine the leaky-LMS update equations. Note that
as with the LMS algorithm, this should not depend on knowledge of Γxx[m] or γdx[m].

(c) Determine ε∗L = minw̄ E
{

e2[n] + λw̄T w̄
}

6. Using the same Leaky-LMS algorithm given in Problem 5,

(a) If E {w̄[n]} converges, to what does it converge? Make appropriate assumptions (e.g.
you may use independence theory).

(b) Under what conditions does the leaky-LMS algorithm converge in the mean, i.e., E {w̄[n]} →
w̄∗ for some w̄∗ ? Make appropriate assumptions (e.g. you may use independence the-
ory).
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